Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(12): 822, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092725

RESUMO

Jagged1 (JAG1) is a Notch ligand that correlates with tumor progression. Not limited to its function as a ligand, JAG1 can be cleaved, and its intracellular domain translocates to the nucleus, where it functions as a transcriptional cofactor. Previously, we showed that JAG1 intracellular domain (JICD1) forms a protein complex with DDX17/SMAD3/TGIF2. However, the molecular mechanisms underlying JICD1-mediated tumor aggressiveness remains unclear. Here, we demonstrate that JICD1 enhances the invasive phenotypes of glioblastoma cells by transcriptionally activating epithelial-to-mesenchymal transition (EMT)-related genes, especially TWIST1. The inhibition of TWIST1 reduced JICD1-driven tumor aggressiveness. Although SMAD3 is an important component of transforming growth factor (TGF)-ß signaling, the JICD1/SMAD3 transcriptional complex was shown to govern brain tumor invasion independent of TGF-ß signaling. Moreover, JICD1-TWIST1-MMP2 and MMP9 axes were significantly correlated with clinical outcome of glioblastoma patients. Collectively, we identified the JICD1/SMAD3-TWIST1 axis as a novel inducer of invasive phenotypes in cancer cells.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Glioblastoma/genética , Proteínas de Homeodomínio/metabolismo , Ligantes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834227

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Assuntos
Anexina A2 , Glioblastoma , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Recidiva Local de Neoplasia , Receptores Notch/metabolismo
3.
Cell Rep ; 41(8): 111626, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417870

RESUMO

Jagged1 (JAG1) is a Notch ligand that contact-dependently activates Notch receptors and regulates cancer progression. The JAG1 intracellular domain (JICD1) is generated from JAG1, like formation of the NOTCH1 intracellular domain (NICD1); however, the role of JICD1 in tumorigenicity has not been comprehensively elucidated. Here we show that JICD1 induces astrocytes to acquire several cancer stem cell properties, including tumor formation, invasiveness, stemness, and resistance to anticancer therapy. The transcriptome, chromatin immunoprecipitation sequencing (ChIP-seq), and proteomics analyses show that JICD1 increases SOX2 expression by forming a transcriptional complex with DDX17, SMAD3, and TGIF2. JICD1-driven tumorigenicity is directly regulated by SOX2. Our results demonstrate that, like NICD1, JICD1 acts as a transcriptional cofactor in formation of the DDX17/SMAD3/TGIF2 transcriptional complex, leading to oncogenic transformation.


Assuntos
Receptores Notch , Transdução de Sinais , Transdução de Sinais/fisiologia , Receptores Notch/metabolismo , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica
4.
Oncol Lett ; 20(2): 1153-1162, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32724355

RESUMO

Glioblastoma (GBM) is the most aggressive and malignant brain tumor, resulting in a poor prognosis. The current therapy for GBM consists in concurrent radiation and chemotherapy following removal of the tumor. Although the therapy prolongs patient survival, recurrence often occurs. The major cause of tumor recurrence is thought to be GBM stem cells (GSCs), which aid the development of chemo-radiotherapy resistance, and can self-renew and aberrantly differentiate. Therefore, GSCs should be targeted to eradicate the tumor and prevent recurrence. Transcriptomic analysis has categorized GBM into proneural (PN), mesenchymal and classical subtypes, and the outcome of recurrence and prognosis markedly depends on subtype. To identify specific GSC markers, the present study analyzed public microarray and RNA-seq data and identified dihydropyrimidinase-related protein 5 (DRP5) as a candidate GSC marker. DRP5 is known to mediate semaphorin 3A signaling and is involved in the regulation of neurite outgrowth and axon guidance during neuronal development. In the present study, DRP5 was specifically upregulated in the PN-subtype GSCs and served crucial roles in maintaining GSC properties, including tumor sphere formation, stem cell marker expression and xenograft tumor growth. Furthermore, bioinformatics analysis revealed that DRP5 expression was positively correlated with signatures of stemness, including Notch, Hedgehog and Wnt/ß-catenin expression, which are also known to be positively correlated with PN-subtype gene signatures. Conversely, DRP5 expression was negatively correlated with NF-κB and signal transducer and activator of transcription 3 stemness signatures, which are negatively correlated with PN-subtype gene signatures. Taken together, these findings suggested that DRP5 was specifically expressed in PN-subtype GSCs and may be used as a functional marker of PN-subtype GSCs.

5.
J Ethnopharmacol ; 236: 393-400, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30878548

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Korean Red ginseng extract (RG) is one of the most widely used traditional health functional food in Asia, which invigorates immunity and vital energy. RG have been suggested to inhibit proliferation, invasion, and inflammation in several cancer cell lines. Correspondingly, clinical studies have raised the possibility that RG could augment therapeutic efficacy in cancer patients. However, little is known about the anti-cancer effects of RG in glioblastoma (GBM), the most common and aggressive brain tumor for which effective therapeutic regimens need to be developed. AIM OF THIS STUDY: Here, we assessed the in vivo and in vitro anti-cancer properties of RG in a patient-derived xenograft mouse model and GBM stem cell (GSC) line. MATERIALS AND METHODS: We evaluated the anti-cancer effects of RG in patient-derived GBM xenograft mice with and without combined concurrent chemo- and radiation therapy (CCRT). Furthermore, we verified the in vitro effects of RG on the proliferation, cell death, and stem cell-like self-renewal capacity of cancer cells. Finally, we investigated the signaling pathway affected by RG, via which its anti-cancer effects were mediated. RESULTS: When combined with CCRT, RG impeded GBM progression by reducing cancer cell proliferation and ionized calcium-binding adapter molecule 1 (IBA1)-positive immune cell recruitment. The anti-cancer effects of RG were mediated by Rg3 and Rh2 ginsenosides. Rg3 promoted cell death while Rh2 did not. Furthermore, both Rg3 and Rh2 reduced cell viability and self-renewal capacity of GSCs by inhibiting Wnt/ß-catenin signaling. CONCLUSION: Therefore, our observations imply that RG could be applied to the GBM patients in parallel with CCRT to enhance therapeutic efficacy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Adulto , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Encéfalo/citologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Medicina Tradicional Coreana , Camundongos , Células-Tronco Neoplásicas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Death Differ ; 26(10): 2139-2156, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30804471

RESUMO

Most glioblastomas frequently recur at sites of radiotherapy, but it is unclear if changes in the tumor microenvironment due to radiotherapy influence glioblastoma recurrence. Here, we demonstrate that radiation-induced senescent glioblastoma cells exhibit a senescence-associated secretory phenotype that functions through NFκB signaling to influence changes in the tumor microenvironment, such as recruitment of Ly6G+ inflammatory cells and vessel formation. In particular, Ly6G+ cells promote conversion of glioblastoma cells to glioblastoma stem cells (GSCs) through the NOS2-NO-ID4 regulatory axis. Specific inhibition of NFκB signaling in irradiated glioma cells using the IκBα super repressor prevents changes in the tumor microenvironment and dedifferentiation of glioblastoma cells. Treatment with Ly6G-neutralizing antibodies also reduces the number of GSCs and prolongs survival in tumor-bearing mice after radiotherapy. Clinically, a positive correlation exists between Ly6G+ cells and the NOS2-NO-ID4 regulatory axis in patients diagnosed with recurrent glioblastoma. Together, our results illustrate important roles for Ly6G+ inflammatory cells recruited by radiation-induced SASP in cancer cell dedifferentiation and tumor recurrence.


Assuntos
Antígenos Ly/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Transfecção
7.
Cell Death Differ ; 26(3): 409-425, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29786075

RESUMO

Glioblastoma (GBM), the most severe and common brain tumor in adults, is characterized by multiple somatic mutations and aberrant activation of inflammatory responses. Immune cell infiltration and subsequent inflammation cause tumor growth and resistance to therapy. Somatic loss-of-function mutations in the gene encoding tumor suppressor protein p53 (TP53) are frequently observed in various cancers. However, numerous studies suggest that TP53 regulates malignant phenotypes by gain-of-function (GOF) mutations. Here we demonstrate that a TP53 GOF mutation promotes inflammation in GBM. Ectopic expression of a TP53 GOF mutant induced transcriptomic changes, which resulted in enrichment of gene signatures related to inflammation and chemotaxis. Bioinformatics analyses revealed that a gene signature, upregulated by the TP53 GOF mutation, is associated with progression and shorter overall survival in GBM. We also observed significant correlations between the TP53 GOF mutation signature and inflammation in the clinical database of GBM and other cancers. The TP53 GOF mutant showed upregulated C-C motif chemokine ligand 2 (CCL2) and tumor necrosis factor alpha (TNFA) expression via nuclear factor kappa B (NFκB) signaling, consequently increasing microglia and monocyte-derived immune cell infiltration. Additionally, TP53 GOF mutation and CCL2 and TNFA expression correlated positively with tumor-associated immunity in patients with GBM. Taken together, our findings suggest that the TP53 GOF mutation plays a crucial role in inflammatory responses, thereby deteriorating prognostic outcomes in patients with GBM.


Assuntos
Neoplasias Encefálicas/genética , Mutação com Ganho de Função , Glioblastoma/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Genes p53 , Glioblastoma/patologia , Células HEK293 , Células HL-60 , Xenoenxertos , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos
8.
Oncol Rep ; 39(1): 411-416, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115569

RESUMO

Although mitochondria play an important role in cell survival, their biological significance in differentiated and undifferentiated cells is not well known. In the present study, we compared the differences in the structure and function of mitochondria between undifferentiated cancer stem cells and differentiated cancer cells. Glioma stem cells (GSCs), when grown under serum culture conditions, demonstrated a decrease in stem cell marker expression and tumor sphere forming ability, while showing an increase in differentiated cell markers. Transmission electron microscopy analysis revealed that the number of mitochondria with distinct cristae and electron-dense matrices increased significantly in the non-stem differentiated glioma cells when compared to their undifferentiated GSCs. Bioinformatic analysis revealed that the glucose metabolic process gene signature was enriched in gene pools that had an increased number of stem cells. Additionally, qRT-PCR analysis revealed that the expression of various glucose metabolism genes was higher in GSCs than in non-stem differentiated glioma cells. Altogether, our results suggest that GSCs have immature mitochondria when compared to differentiated glioma cells. Notably, GSCs prefer a relatively higher glucose metabolism, which implies that they utilize different mitochondrial biosynthesis and metabolic pathways when compared to differentiated glioma cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Redes Reguladoras de Genes , Glioma/metabolismo , Mitocôndrias/ultraestrutura , Células-Tronco Neoplásicas/citologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glucose/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima
9.
J Med Food ; 20(9): 838-845, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28792781

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal human brain tumors, and the median survival of patients with GBM is only 14 months. Glioblastoma stem cells (GSCs) are regarded as a main cause of GBM recurrence, because of their self-renewal and drug resistance properties. Therefore, targeting GSCs is an important therapeutic strategy for GBM. In this study, we show the effects of BRM270, a compound from natural plant extracts, on GSCs in vitro and GBM recurrence in vivo. BRM270 induced apoptotic cell death and inhibited cell growth and "stemness" both in vitro and in vivo. Combining BRM270 treatment with concurrent chemoradiotherapy (CCRT) dramatically increased mice survival and tumor growth inhibition. Taken together, our results suggested that BRM270 synergizes with CCRT as a therapeutic agent to target GSCs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Extratos Vegetais/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/radioterapia , Proliferação de Células/efeitos da radiação , Quimiorradioterapia , Terapia Combinada , Glioblastoma/fisiopatologia , Glioblastoma/radioterapia , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação
10.
Mol Cells ; 40(7): 515-522, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28736425

RESUMO

CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-1ß and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-1ß gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-1ß signaling pathway.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Interleucina-1beta/metabolismo , Infiltração de Neutrófilos , Transdução de Sinais , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Regulação para Cima/genética
11.
Tumour Biol ; 39(5): 1010428317692244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28459217

RESUMO

Resistance to conventional therapies and frequent recurrence are the major obstacles to the treatment of high-grade gliomas, including glioblastoma. Thus, the development of new therapeutic strategies to overcome these obstacles is necessary to improve the treatment outcomes. In this study, we found that verapamil, a pan-adenosine triphosphate-binding cassette transporter and L-type voltage-dependent calcium channel inhibitor, sensitized U87MG glioma cells to carmustine- and irradiation-induced senescence. Furthermore, our results indicated that verapamil treatment, in combination with carmustine and irradiation, rendered U87MG glioma cells and several patient-derived glioma stem cells more sensitive to therapy-induced senescence than individual or dual-combination treatments. When investigating the underlying mechanism, we found that verapamil treatment markedly decreased intracellular reactive oxygen species and calcium ion levels. Reactive oxygen species reduction with N-acetylcysteine, a reactive oxygen species scavenger, rendered U87MG glioma cells more sensitive to carmustine and irradiation whereas the protein kinase C agonist, phorbol 12-myristate 13-acetate, mitigated the effects of carmustine and irradiation. Taken together, our results indicate that verapamil may be a potent therapeutic sensitizer for increasing the effectiveness of glioblastoma treatment.


Assuntos
Carmustina/administração & dosagem , Glioma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Verapamil/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Cálcio/metabolismo , Canais de Cálcio Tipo L/biossíntese , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Terapia Combinada , Glioma/patologia , Glioma/radioterapia , Humanos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Espécies Reativas de Oxigênio/metabolismo
12.
BMB Rep ; 50(3): 117-125, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27998397

RESUMO

Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity. [BMB Reports 2017; 50(3): 117-125].


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos , Epigenômica , Heterogeneidade Genética , Humanos , Neoplasias/patologia , Microambiente Tumoral/fisiologia
13.
Tumour Biol ; 37(5): 5857-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26586398

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.


Assuntos
Senescência Celular/efeitos da radiação , Glioblastoma/metabolismo , Glioblastoma/patologia , Fenótipo , Animais , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/radioterapia , Xenoenxertos , Humanos , Camundongos , NF-kappa B/metabolismo , Ativação Transcricional
14.
Tumour Biol ; 36(7): 5561-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25680411

RESUMO

Interferon regulatory factor 7 (IRF7) is the master transcription factor that plays a pivotal role in the transcriptional activation of type I interferon genes in the inflammatory response. Our previous study revealed that IRF7 is an important regulator of tumor progression via the expression of inflammatory cytokines in glioma. Here, we report that IRF7 promotes glioma invasion and confers resistance to both chemotherapy and radiotherapy by inhibiting expression of argonaute 2 (AGO2), a regulator of microRNA biogenesis. We found that IRF7 and AGO2 expression levels were negatively correlated in patients with glioblastoma multiforme. Ectopic IRF7 expression led to a reduction in AGO2 expression, while depletion of IRF7 resulted in increased AGO2 expression in the LN-229 glioma cell line. In an in vitro invasion assay, IRF7 overexpression enhanced glioma cell invasion. Furthermore, reconstitution of AGO2 expression in IRF7-overexpressing cells led to decreased cell invasion, whereas the reduced invasion due to IRF7 depletion was rescued by AGO2 depletion. In addition, IRF7 induced chemoresistance and radioresistance of glioma cells by diminishing AGO2 expression. Finally, AGO2 depletion alone was sufficient to accelerate glioma cell invasion in vitro and in vivo, indicating that AGO2 regulates cancer cell invasion. Taken together, our results indicate that IRF7 promotes glioma cell invasion and both chemoresistance and radioresistance through AGO2 inhibition.


Assuntos
Proteínas Argonautas/biossíntese , Neoplasias Encefálicas/genética , Glioma/genética , Fator Regulador 7 de Interferon/biossíntese , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/radioterapia , Humanos , Fator Regulador 7 de Interferon/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Tolerância a Radiação/genética
15.
Tumour Biol ; 36(4): 2921-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25514871

RESUMO

Glioblastoma is a highly aggressive primary brain tumor in which the majority of cancer cells are undifferentiated. One of the most common oncogenic drivers for this malignancy is the epidermal growth factor receptor variant III (EGFRvIII), which lacks a portion of the extracellular ligand-binding domain due to deletion of exons 2-7 of the EGFR gene. EGFRvIII plays a critical role in tumor progression, promoting acquisition of stem cell-like features including an undifferentiated state and therapy resistance. However, the molecular mechanisms by which EGFRvIII contributes to cancer cell aggressiveness remain poorly understood. Here, we show that EGFR expression correlates with JAGGED1 expression in glioblastoma patients. Overexpression of EGFRvIII in glioma cell lines augmented JAGGED1 expression at the transcriptional level through the mitogen-activated protein kinase signaling pathway. Consequently, EGFRvIII overexpression drove partial dedifferentiation of glioma cells, as determined by tumorsphere-forming ability and expression of stem cell markers, through JAGGED1 induction. EGFRvIII-mediated radioresistance, but not chemoresistance, was also modulated by JAGGED1. Taken together, our results provide new insight into the mechanism underlying EGFRvIII-driven glioblastoma aggressiveness.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação ao Cálcio/biossíntese , Receptores ErbB/biossíntese , Glioma/genética , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Membrana/biossíntese , Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/radioterapia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
16.
Cancer Lett ; 353(2): 194-200, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25079688

RESUMO

The invasiveness of glioblastoma is a major cause of poor prognosis and relapse. However, the molecular mechanism controlling glioma cell invasion is poorly understood. Here, we report that receptor activator of nuclear factor kappa-B (NFκB) ligand (RANKL) promotes glioma cell invasion in vivo, but not in vitro. Unlike the invasiveness under in vitro culture conditions, in vivo xenograft studies revealed that LN229 cells expressing high endogenous RANKL generated more invasive tumors than U87MG cells expressing relatively low endogenous RANKL. Consistently, RANKL-overexpressing U87MG resulted in invasive tumors, whereas RANKL-depleted LN229 generated rarely invasive tumors. We found that the number of activated astrocytes was markedly increased in the periphery of RANKL-high invasive tumors. RANKL activated astrocytes through NFκB signaling and these astrocytes in turn secreted various factors which regulate glioma cell invasion. Among them, transforming growth factor ß (TGF-ß) signaling was markedly increased in glioblastoma specimens and xenograft tumors expressing high levels of RANKL. These results indicate that RANKL contributes to glioma invasion by modulating the peripheral microenvironment of the tumor, and that targeting RANKL signaling has important implications for the prevention of highly invasive glioblastoma.


Assuntos
Astrócitos/fisiologia , Neoplasias Encefálicas/metabolismo , Citocinas/fisiologia , Glioblastoma/metabolismo , Ligante RANK/fisiologia , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...